Модель АТФДеятельность мышц, как любой процесс, происходящий в организме, требует энергии. Энергия нужна даже на работу мельчайших мышц глаза, дыхательных мышц и мышц сосудов или внутренних органов. Живой организм расходует энергию даже в состоянии глубокого наркоза или комы.

Энергия, необходимая для мышечного сокращения, освобождается в результате распада химических веществ. Мышечная клетка устроена природой так, что может использовать для своего сокращения энергию распада только одного-единственного химического вещества - аденозинтрифосфорной кислоты (АТФ). Энергия распада других веществ для сокращения мышцы не подходит. Соответственно, во время мышечного сокращения происходит распад АТФ в работающей мышечной клетке. И если бы не было механизмов восстановления этого вещества, то мышца, сократившись один-два раза, навсегда потеряла бы эту способность. Но природа предусмотрела возможность восстанавливать АТФ. И вот для ее восстановления уже подходит энергия распада практически любого вещества. Обычно это углеводы, реже - жиры, еще реже – белки или другие вещества. Запасы этих веществ поступают в организм вместе с пищей.

Распад веществ в мышечной клетке может происходить двумя основными путями: при участии кислорода (аэробно) и без участия кислорода (анаэробно). У каждого способа есть свои преимущества и недостатки .

Преимущество распада веществ с участием кислорода (аэробного) в том, что такой распад не сопровождается накоплением в организме промежуточных недоокисленных продуктов обмена. Вещества расщепляются до конечных продуктов – углекислого газа и воды. Полный распад дает, соответственно, много энергии, поэтому является более экономичным, чем неполный распад (однако требует большого количества времени). Кроме того, с помощью кислорода можно расщепить практически любые вещества, имеющиеся в организме – углеводы, жиры, белки. Недостатком же является чрезвычайная длительность такого способа распада, поэтому он не может использоваться в начале работы или в случаях, когда деятельность достаточно интенсивна и требует высокой скорости освобождения энергии.

Преимуществом бескислородного (анаэробного) распада является высокая скорость освобождения энергии, необходимой для синтеза АТФ, что позволяет выполнять чрезвычайно интенсивную работу. Но существует и ряд недостатков такого способа расщепления.

Во-первых, без участия кислорода в мышечных клетках способны расщепляться не все вещества, а только определенные виды углеводов (глюкоза и ее производное – гликоген, причем обычно используется гликоген) и химическое вещество под названием креатинфосфат. Запасы этих веществ в клетке не безграничны.

Креатинфосфат или гликоген должны либо восстанавливаться, либо поступать из крови. На оба процесса требуется определенное время, в течение которого интенсивную работу выполнять уже невозможно. Запасов креатинфосфата в мышечной клетке хватает на работу в течение нескольких секунд (5-6 секунд). За счет расщепления гликогена энергией обеспечивается интенсивная работа, которая может продолжаться от 20 секунд до 4-5 минут, а также начало любой деятельности (Я. М. Коц, 1982).

Во-вторых, без участия кислорода вещества расщепляются не полностью, поэтому в мышцах накапливаются недоокисленные продукты распада (наиболее известным является молочная кислота – один из возможных продуктов неполного распада гликогена). Эти недоокисленные вещества, изменяют внутреннюю среду клеток так, что клетки становятся неспособны выполнять свои функции. То есть мышца становится неспособной более сокращаться, и человек прекращает работу.

В действительности же во время мышечной деятельности наблюдаются оба варианта распада веществ, однако, один из них, как правило, преобладает. Если при работе распад веществ для восстановления АТФ происходит преимущественно с участием кислорода, такая работа называется аэробной. Если же распад веществ происходит преимущественно без участия кислорода, такая работа называется анаэробной (Я. М. Коц, 1982).

Итак, ресинтез АТФ в процессе мышечной деятельности осуществляется за счет метаболических процессов трех видов:

  • аэробного – окислительного, за счет кислорода воздуха;
  • гликолитического анаэробного – за счет расщепления гликогена, содержащегося в основном в печени и в мышцах, до молочной кислоты;
  • алактатного анаэробного – за счет расщепления фосфорных соединений, содержащихся и образующихся непосредственно в мышцах.

Проявление выносливости, таким образом, можно представить как результат различного сочетания трех ее компонентов: аэробного, гликолитического и алактатного.

Литература.

  1. Верхошанский Ю. В. Основы специальной физической подготовки спортсменов. – М., 1988. - 331 с.
  2. Вовк С. И. Особенности долговременной динамики тренированности // Теория и практика физической культуры, 2001, № 2, с. 28-31.
  3. Городниченко Э. Г. Оценка работоспособности двигательного аппарата человека по показателям статической выносливости импульса силы // Теория и практика физической культуры, 1996, № 8, с. 46-47.
  4. Коренберг В. Б. Проблема физических и двигательных качеств // Теория и практика физической культуры, 1996, № 7, с. 2-5.
  5. Коц Я. М. Физиология мышечной деятельности. Учебн. для ин-тов физ. культ. М.,1982.
  6. Матвеев Л. П. Основы спортивной тренировки. – М.: Физкультура и спорт, 1977. – 271 с.
  7. Матвеев Л. П. Теория и методика физической культуры. Учебное пособие для ин-тов физ. культуры. –– М.: Физкультура и спорт, 1991.–543 с.
  8. Менхин Ю. В. К проблеме обеспечения надежности физической подготовленности спортсменов // Теория и практика физической культуры, 1996, № 4, с. 44-48.
  9. Суслов Ф. П. Проблема общей выносливости в системе подготовки спортсменов (терминология, критерии, решаемые задачи) // Теория и практика физической культуры, 1997, № 7, с. 38-42.
  10. Яруллин Р. Х. Качества двигательной деятельности человека // Теория и практика физической культуры, 1999, № 8, с. 20-21.

© www.fizkulturaisport.ru